Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 247: 118249, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244972

RESUMO

Amphibian populations are undergoing extensive declines globally. The fungal disease chytridiomycosis, caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd), is a primary contributor to these declines. The amphibian metamorphic stages (Gosner stages 42-46) are particularly vulnerable to a range of stressors, including Bd. Despite this, studies that explicitly examine host response to chytridiomycosis throughout the metamorphic stages are lacking. We aimed to determine how Bd exposure during the larval stages impacts metamorphic development and infection progression in the endangered Fleay's barred frog (Mixophyes fleayi). We exposed M. fleayi to Bd during pro-metamorphosis (Gosner stages 35-38) and monitored infection dynamics throughout metamorphosis. We took weekly morphological measurements (weight, total body length, snout-vent-length and Gosner stage) and quantified Bd load using qPCR. While we observed minimal impact of Bd infection on animal growth and development, Bd load varied throughout ontogeny, with an infection load plateau during the tadpole stages (Gosner stages 35-41) and temporary infection clearance at Gosner stage 42. Bd load increased exponentially between Gosner stages 42 and 45, with most exposed animals becoming moribund at Gosner stage 45, prior to the completion of metamorphosis. There was variability in infection outcome of exposed individuals, with a subgroup of animals (n = 5/29) apparently clearing their infection while the majority (n = 21/29) became moribund with high infection burdens. This study demonstrates the role that metamorphic restructuring plays in shaping Bd infection dynamics and raises the concern that substantial Bd-associated mortality could be overlooked in the field due to the often cryptic nature of these latter metamorphic stages. We recommend future studies that directly examine the host immune response to Bd infection throughout metamorphosis, incorporating histological and molecular methods to elucidate the mechanisms responsible for the observed trends.


Assuntos
Quitridiomicetos , Micoses , Humanos , Animais , Quitridiomicetos/fisiologia , Anuros/microbiologia , Micoses/microbiologia , Metamorfose Biológica , Larva/microbiologia
2.
Oecologia ; 202(2): 445-454, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37349661

RESUMO

The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has caused catastrophic frog declines on several continents, but disease outcome is mediated by a number of factors. Host life stage is an important consideration and many studies have highlighted the vulnerability of recently metamorphosed or juvenile frogs compared to adults. The majority of these studies have taken place in a laboratory setting, and there is a general paucity of longitudinal field studies investigating the influence of life stage on disease outcome. In this study, we assessed the effect of endemic Bd on juvenile Mixophyes fleayi (Fleay's barred frog) in subtropical eastern Australian rainforest. Using photographic mark-recapture, we made 386 captures of 116 individuals and investigated the effect of Bd infection intensity on the apparent mortality rates of frogs using a multievent model correcting for infection state misclassification. We found that neither Bd infection status nor infection intensity predicted mortality in juvenile frogs, counter to the expectation that early life stages are more vulnerable to disease, despite average high infection prevalence (0.35, 95% HDPI [0.14, 0.52]). Additionally, we found that observed infection prevalence and intensity were somewhat lower for juveniles than adults. Our results indicate that in this Bd-recovered species, the realized impacts of chytridiomycosis on juveniles were apparently low, likely resulting in high recruitment contributing to population stability. We highlight the importance of investigating factors relating to disease outcome in a field setting and make recommendations for future studies.


Assuntos
Quitridiomicetos , Micoses , Humanos , Animais , Austrália , Anuros/microbiologia , Micoses/veterinária , Micoses/microbiologia
3.
Ecol Appl ; 33(1): e2724, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36054297

RESUMO

Novel infectious diseases, particularly those caused by fungal pathogens, pose considerable risks to global biodiversity. The amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) has demonstrated the scale of the threat, having caused the greatest recorded loss of vertebrate biodiversity attributable to a pathogen. Despite catastrophic declines on several continents, many affected species have experienced population recoveries after epidemics. However, the potential ongoing threat of endemic Bd in these recovered or recovering populations is still poorly understood. We investigated the threat of endemic Bd to frog populations that recovered after initial precipitous declines, focusing on the endangered rainforest frog Mixophyes fleayi. We conducted extensive field surveys over 4 years at three independent sites in eastern Australia. First, we compared Bd infection prevalence and infection intensities within frog communities to reveal species-specific infection patterns. Then, we analyzed mark-recapture data of M. fleayi to estimate the impact of Bd infection intensity on apparent mortality rates and Bd infection dynamics. We found that M. fleayi had lower infection intensities than sympatric frogs across the three sites, and cleared infections at higher rates than they gained infections throughout the study period. By incorporating time-varying individual infection intensities, we show that healthy M. fleayi populations persist despite increased apparent mortality associated with infrequent high Bd loads. Infection dynamics were influenced by environmental conditions, with Bd prevalence, infection intensity, and rates of gaining infection associated with lower temperatures and increased rainfall. However, mortality remained constant year-round despite these fluctuations in Bd infections, suggesting major mortality events did not occur over the study period. Together, our results demonstrate that while Bd is still a potential threat to recovered populations of M. fleayi, high rates of clearing infections and generally low average infection loads likely minimize mortality caused by Bd. Our results are consistent with pathogen resistance contributing to the coexistence of M. fleayi with endemic Bd. We emphasize the importance of incorporating infection intensity into disease models rather than infection status alone. Similar population and infection dynamics likely exist within other recovered amphibian-Bd systems around the globe, promising longer-term persistence in the face of endemic chytridiomycosis.


Assuntos
Quitridiomicetos , Micoses , Animais , Batrachochytrium , Anuros , Micoses/epidemiologia , Micoses/veterinária , Micoses/microbiologia , Biodiversidade
4.
Dev Comp Immunol ; 136: 104510, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35985564

RESUMO

Amphibians are among the vertebrate groups suffering great losses of biodiversity due to a variety of causes including diseases, such as chytridiomycosis (caused by the fungal pathogens Batrachochytrium dendrobatidis and B. salamandrivorans). The amphibian metamorphic period has been identified as being particularly vulnerable to chytridiomycosis, with dramatic physiological and immunological reorganisation likely contributing to this vulnerability. Here, we overview the processes behind these changes at metamorphosis and then perform a systematic literature review to capture the breadth of empirical research performed over the last two decades on the metamorphic immune response. We found that few studies focused specifically on the immune response during the peri-metamorphic stages of amphibian development and fewer still on the implications of their findings with respect to chytridiomycosis. We recommend future studies consider components of the immune system that are currently under-represented in the literature on amphibian metamorphosis, particularly pathogen recognition pathways. Although logistically challenging, we suggest varying the timing of exposure to Bd across metamorphosis to examine the relative importance of pathogen evasion, suppression or dysregulation of the immune system. We also suggest elucidating the underlying mechanisms of the increased susceptibility to chytridiomycosis at metamorphosis and the associated implications for population persistence. For species that overlap a distribution where Bd/Bsal are now endemic, we recommend a greater focus on management strategies that consider the important peri-metamorphic period.


Assuntos
Quitridiomicetos , Micoses , Anfíbios , Animais , Quitridiomicetos/fisiologia , Sistema Imunitário , Metamorfose Biológica
5.
Zootaxa ; 5104(2): 209-241, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35391040

RESUMO

The six species of mountain frogs (Philoria: Limnodynastidae: Anura) are endemic to south-eastern Australia. Five species occur in headwater systems in mountainous north-eastern New South Wales (NSW) and south-eastern Queensland (Qld), centred on the Gondwana Rainforests of Australia World Heritage Area. A previous molecular genetic analysis identified divergent genetic lineages in the central and western McPherson Ranges region of Qld and NSW, but sampling was inadequate to test the species status of these lineages. With more comprehensive geographic sampling and examination of the nuclear genome using SNP analysis, we show that an undescribed species, P. knowlesi sp. nov., occurs in the central and western McPherson Ranges (Levers Plateau and Mount Barney complex). The new species is not phylogenetically closely related to P. loveridgei in the nuclear data but is related to one of two divergent lineages within P. loveridgei in the mtDNA data. We postulate that the discordance between the nuclear and mtDNA outcomes is due to ancient introgression of the mtDNA genome from P. loveridgei into the new species. Male advertisement calls and multivariate morphological analyses do not reliably distinguish P. knowlesi sp. nov. from any of the Philoria species in northeast NSW and southeast Qld. The genetic comparisons also enable us to define further the distributions of P. loveridgei and P. kundagungan. Samples from the Lamington Plateau, Springbrook Plateau, Wollumbin (Mt Warning National Park), and the Nightcap Range, are all P. loveridgei, and its distribution is now defined as the eastern McPherson Ranges and Tweed caldera. Philoria kundagungan is distributed from the Mistake Mountains in south-eastern Qld to the Tooloom Scrub on the Koreelah Range, southwest of Woodenbong, in NSW, with two subpopulations identified by SNP analysis. We therefore assessed the IUCN threat category of P. loveridgei and P. kundagungan and undertook new assessments for each of its two subpopulations and for the new taxon P. knowlesi sp. nov., using IUCN Red List criteria. Philoria loveridgei, P. kundagungan (entire range and northern subpopulation separately) and P. knowlesi sp. nov. each meet criteria for Endangered (EN B2(a)(b)[i, iii]). The southern subpopulation of P. kundagungan, in the Koreelah Range, meets criteria for Critically Endangered (CE B2(a)(b)[i, iii]). These taxa are all highly threatened due to the small number of known locations, the restricted nature of their breeding habitat, and direct and indirect threats from climate change, and the potential impact of the amphibian disease chytridiomycosis. Feral pigs are an emerging threat, with significant impacts now observed in Philoria breeding habitat in the Mistake Mountains.


Assuntos
Anuros , Floresta Úmida , Animais , Anuros/genética , Austrália , DNA Mitocondrial/genética , Masculino , Filogenia
6.
Ecol Lett ; 24(1): 130-148, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33067922

RESUMO

Emerging infectious diseases have caused many species declines, changes in communities and even extinctions. There are also many species that persist following devastating declines due to disease. The broad mechanisms that enable host persistence following declines include evolution of resistance or tolerance, changes in immunity and behaviour, compensatory recruitment, pathogen attenuation, environmental refugia, density-dependent transmission and changes in community composition. Here we examine the case of chytridiomycosis, the most important wildlife disease of the past century. We review the full breadth of mechanisms allowing host persistence, and synthesise research on host, pathogen, environmental and community factors driving persistence following chytridiomycosis-related declines and overview the current evidence and the information required to support each mechanism. We found that for most species the mechanisms facilitating persistence have not been identified. We illustrate how the mechanisms that drive long-term host population dynamics determine the most effective conservation management strategies. Therefore, understanding mechanisms of host persistence is important because many species continue to be threatened by disease, some of which will require intervention. The conceptual framework we describe is broadly applicable to other novel disease systems.


Assuntos
Quitridiomicetos , Micoses , Anfíbios , Animais , Micoses/veterinária , Dinâmica Populacional
7.
J Fungi (Basel) ; 6(4)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086692

RESUMO

Amphibians are currently the most threatened vertebrate class, with the disease chytridiomycosis being a major contributor to their global declines. Chytridiomycosis is a frequently fatal skin disease caused by the fungal pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal). The severity and extent of the impact of the infection caused by these pathogens across modern Amphibia are unprecedented in the history of vertebrate infectious diseases. The immune system of amphibians is thought to be largely similar to that of other jawed vertebrates, such as mammals. However, amphibian hosts are both ectothermic and water-dependent, which are characteristics favouring fungal proliferation. Although amphibians possess robust constitutive host defences, Bd/Bsal replicate within host cells once these defences have been breached. Intracellular fungal localisation may contribute to evasion of the induced innate immune response. Increasing evidence suggests that once the innate defences are surpassed, fungal virulence factors suppress the targeted adaptive immune responses whilst promoting an ineffectual inflammatory cascade, resulting in immunopathology and systemic metabolic disruption. Thus, although infections are contained within the integument, crucial homeostatic processes become compromised, leading to mortality. In this paper, we present an integrated synthesis of amphibian post-metamorphic immunological responses and the corresponding outcomes of infection with Bd, focusing on recent developments within the field and highlighting future directions.

8.
Front Immunol ; 9: 2536, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30473694

RESUMO

The fungal skin disease, chytridiomycosis (caused by Batrachochytrium dendrobatidis and B. salamandrivorans), has caused amphibian declines and extinctions globally since its emergence. Characterizing the host immune response to chytridiomycosis has been a focus of study with the aim of disease mitigation. However, many aspects of the innate and adaptive arms of this response are still poorly understood, likely due to the wide range of species' responses to infection. In this paper we provide an overview of expected immunological responses (with inference based on amphibian and mammalian immunology), together with a synthesis of current knowledge about these responses for the amphibian-chytridiomycosis system. We structure our review around four key immune stages: (1) the naïve immunocompetent state, (2) immune defenses that are always present (constitutive defenses), (3) mechanisms for recognition of a pathogen threat and innate immune defenses, and (4) adaptive immune responses. We also evaluate the current hot topics of immunosuppression and immunopathology in chytridiomycosis, and discuss their respective roles in pathogenesis. Our synthesis reveals that susceptibility to chytridiomycosis is likely to be multifactorial. Susceptible amphibians appear to have ineffective constitutive and innate defenses, and a late-stage response characterized by immunopathology and Bd-induced suppression of lymphocyte responses. Overall, we identify substantial gaps in current knowledge, particularly concerning the entire innate immune response (mechanisms of initial pathogen detection and possible immunoevasion by Bd, degree of activation and efficacy of the innate immune response, the unexpected absence of innate leukocyte infiltration, and the cause and role of late-stage immunopathology in pathogenesis). There are also gaps concerning most of the adaptive immune system (the relative importance of B and T cell responses for pathogen clearance, the capacity and extent of immunological memory, and specific mechanisms of pathogen-induced immunosuppression). Improving our capacity for amphibian immunological research will require selection of an appropriate Bd-susceptible model species, the development of taxon-specific affinity reagents and cell lines for functional assays, and the application of a suite of conventional and emerging immunological methods. Despite current knowledge gaps, immunological research remains a promising avenue for amphibian conservation management.


Assuntos
Anfíbios/imunologia , Quitridiomicetos/imunologia , Dermatomicoses/imunologia , Imunidade Inata/imunologia , Pele/imunologia , Animais , Dermatomicoses/microbiologia , Suscetibilidade a Doenças/imunologia , Memória Imunológica/imunologia , Pele/microbiologia
9.
Conserv Biol ; 14(6): 1908-1912, 2000 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-35701925

RESUMO

Protected areas are commonly viewed as safe havens for endangered species. To test this notion, we experimentally constructed small rock outcrops for the endangered broad-headed snake ( Hoplocephalus bungaroides) within a national park near Sydney, Australia. Rock outcrops provide vital shelter sites during the cooler months of the year. Constructed rock outcrops (3 × 5 m) were placed at 11 paired sites located near (≤250 m) and far from (>400 m) walking tracks and roads. Eight of our 22 rock outcrops were disturbed by people over a 15-month period. Disturbance consisted of displacement of some rocks or complete destruction of the outcrop. Disturbed outcrops occurred up to 450 m from a walking track or road. Disturbance to natural outcrops has also been observed in this park. This demonstrates a continuing decline in the quality of this snake's habitat. Twenty of our rock outcrops were colonized by velvet geckos (Oedura lesueurii), the primary prey of this snake. One broad-headed snake was found in one outcrop. According to these findings, attempts to restore the habitat of this endangered snake should be centered on sites located ≥500 m from a walking track or road. Our study highlights the value of targeted experiments that precede larger-scale habitat restoration.


RESUMEN: Las áreas protegidas son comúnmente vistas como paraísos libres de riesgos para las especies amenazadas. Para probar esta noción, construimos experimentalmente pequeños farallones rocosos para la serpiente amenazada de cabeza ancha ( Hoplocephalus bungaroides) dentro de un parque nacional cercano a Sydney, Australia. Los farallones de roca proveen protección vital durante los meses más fríos del año. Los farallones construidos (3 × 5 m) fueron colocados en once sitios pareados localizados cerca (≤250 m) y lejos (>400 m) de los senderos y carreteras. Ocho de los 22 farallones fueron perturbados por gentes sobre un período de 15 meses. La perturbación consistió en el desplazamiento de algunas rocas o en la completa destrucción del farallón. Los farallones perturbados se encontraban hasta 450 m de los senderos o las carreteras. La perturbación de farallones naturales también ha sido observada en este parque. Esto demuestra una disminución continua de la cantidad de este tipo de hábitat para las serpientes. Veinte de nuestros farallones fueron colonizados por gecos velvet (Oedura lasueurii), la principal presa de esta serpiente. Con base en estos resultados, los intentos para restaurar el hábitat de esta especie de serpiente amenazada deberán centrarse en sitios localizados ≥500 m de los senderos o las carreteras. Nuestro estudio subraya el valor de los experimentos que preceden a esfuerzos de restauración del hábitat a gran escala.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA